how to find amplitude

6 hours ago 3
Nature

To find the amplitude of a wave or periodic function, you can use the following methods:

1. Using Maximum and Minimum Values

  • Identify the maximum value (peak) and minimum value (trough) of the function.
  • Calculate the amplitude as half the difference between the maximum and minimum values:

Amplitude=max value−min value2\text{Amplitude}=\frac{\text{max value}-\text{min value}}{2}Amplitude=2max value−min value​

This formula gives the vertical distance from the midline (equilibrium position) to either the peak or the trough

2. Using the Midline

  • Find the midline, which is the average of the maximum and minimum values:

Midline=max value+min value2\text{Midline}=\frac{\text{max value}+\text{min value}}{2}Midline=2max value+min value​

  • Then, calculate amplitude as the distance from the midline to the maximum value:

Amplitude=max value−midline\text{Amplitude}=\text{max value}-\text{midline}Amplitude=max value−midline

This method is equivalent to the first and useful when the function has a vertical offset

3. From the Equation of a Sine or Cosine Function

If the function is given in the form:

y=asin⁡(b(x−h))+kory=acos⁡(b(x−h))+ky=a\sin(b(x-h))+k\quad \text{or}\quad y=a\cos(b(x-h))+ky=asin(b(x−h))+kory=acos(b(x−h))+k

then the amplitude is the absolute value of the coefficient aaa:

Amplitude=∣a∣\text{Amplitude}=|a|Amplitude=∣a∣

This represents the vertical stretch or compression of the sine or cosine wave

Summary

  • Amplitude is the height from the midline to a peak or trough.
  • Formula using max and min values: max−min2\frac{\text{max}-\text{min}}{2}2max−min​
  • Formula using midline: max−midline\text{max}-\text{midline}max−midline
  • From equation y=asin⁡(…)+ky=a\sin(\ldots)+ky=asin(…)+k, amplitude = ∣a∣|a|∣a∣

These methods apply to sine, cosine, and other periodic functions or waves