Your question is a bit general. To provide a precise answer, I need to know the number of digits you're asking about. For example:
- How many 2-digit multiples of 11 are there?
- How many 3-digit multiples of 11 are there?
- Or, how many multiples of 11 have n digits?
Could you please specify the number of digits? Meanwhile, I’ll explain how to find the count for multiples of 11 with a given number of digits.
How to Find the Number of n-Digit Multiples of 11
Step 1: Define the range of n-digit numbers
- The smallest n-digit number is 10n−110^{n-1}10n−1.
- The largest n-digit number is 10n−110^n-110n−1.
For example, for 3-digit numbers:
- Smallest: 100
- Largest: 999
Step 2: Find the smallest and largest multiples of 11 in that range
- Smallest multiple of 11 ≥ 10n−110^{n-1}10n−1:
smallest=11×⌈10n−111⌉\text{smallest}=11\times \lceil \frac{10^{n-1}}{11}\rceil smallest=11×⌈1110n−1⌉
- Largest multiple of 11 ≤ 10n−110^n-110n−1:
largest=11×⌊10n−111⌋\text{largest}=11\times \left\lfloor \frac{10^n-1}{11}\right\rfloor largest=11×⌊1110n−1⌋
Step 3: Calculate the number of multiples
The number of multiples of 11 between smallest and largest (inclusive) is:
largest−smallest11+1\frac{\text{largest}-\text{smallest}}{11}+111largest−smallest+1
Example: Number of 3-digit multiples of 11
- Smallest 3-digit number: 100
- Largest 3-digit number: 999
Calculate smallest multiple of 11 ≥ 100:
⌈10011⌉=⌈9.09⌉=10\lceil \frac{100}{11}\rceil =\lceil 9.09\rceil =10⌈11100⌉=⌈9.09⌉=10
So smallest multiple = 11×10=11011\times 10=11011×10=110 Calculate largest multiple of 11 ≤ 999:
⌊99911⌋=⌊90.81⌋=90\left\lfloor \frac{999}{11}\right\rfloor =\lfloor 90.81\rfloor =90⌊11999⌋=⌊90.81⌋=90
So largest multiple = 11×90=99011\times 90=99011×90=990 Number of 3-digit multiples of 11:
990−11011+1=88011+1=80+1=81\frac{990-110}{11}+1=\frac{880}{11}+1=80+1=8111990−110+1=11880+1=80+1=81
If you tell me the number of digits you're interested in, I can calculate the exact count for you!