how to find the vertex of a parabola

2 minutes ago 1
how to find the vertex of a parabola

The vertex of a parabola can be found using the formula based on the quadratic equation in standard form y=ax2+bx+cy=ax^2+bx+cy=ax2+bx+c.

Steps to Find the Vertex:

  1. Identify coefficients aaa and bbb from the quadratic equation.
  2. Calculate the x-coordinate of the vertex using the formula:

x=−b2ax=-\frac{b}{2a}x=−2ab​

  1. Substitute this x-coordinate back into the original quadratic equation to find the corresponding y-coordinate.

Thus, the vertex (h,k)(h,k)(h,k) is:

(h,k)=(−b2a, y(−b2a))(h,k)=\left(-\frac{b}{2a},;y\left(-\frac{b}{2a}\right)\right)(h,k)=(−2ab​,y(−2ab​))

Additional Notes:

  • If the quadratic is in vertex form y=a(x−h)2+ky=a(x-h)^2+ky=a(x−h)2+k, the vertex is simply (h,k)(h,k)(h,k).
  • For a parabola opening up or down, the vertex represents the minimum or maximum point respectively.
  • For a parabola given in factored form y=a(x−p)(x−q)y=a(x-p)(x-q)y=a(x−p)(x−q), the x-coordinate of the vertex is the midpoint of the roots, x=p+q2x=\frac{p+q}{2}x=2p+q​, and substituting this value back finds the y-coordinate.

Example:
Given y=2x2−4x+1y=2x^2-4x+1y=2x2−4x+1,

  • a=2,b=−4a=2,b=-4a=2,b=−4
  • x=−−42×2=1x=-\frac{-4}{2\times 2}=1x=−2×2−4​=1
  • y=2(1)2−4(1)+1=−1y=2(1)^2-4(1)+1=-1y=2(1)2−4(1)+1=−1
  • So vertex is (1,−1)(1,-1)(1,−1).